Motion illusion-like patterns extracted from photos and fine art images using predictive deep neural networks

  • Kitaoka, A. The Fraser-Wilcox illusion and its extension. AG Shapiro and D. Todorović (Eds.), The Oxford Compendium of Visual Illusions, Oxford University Press500–511 (2017).

  • Fraser, A. & Wilcox, KJ Perception of Illusory Motion. Nature 281565-566 (1979).

    ADS CAS Article Google Scholar

  • Faubert, J. & Herbert, AM The Illusion of Peripheral Drift: An Illusion of Movement in the Visual Periphery. Perception 28617–621 (1999).

    CAS Google Scholar Article

  • Naor-Raz, G. & Sekuler, R. Perceptual dimorphism in visual motion from stationary patterns. Perception 29325–335 (2000).

    CAS Google Scholar Article

  • Kitaoka, A. & Ashida, H. Phenomenal characteristics of the peripheral drift illusion. Vision 15261-262 (2003).

    Google Scholar

  • Conway, BR, Kitaoka, A., Yazdanbakhsh, A., Pack, CC & Livingstone, MS Neural basis for powerful static motion illusion. J. Neurosci. 255651–5656 (2005).

    CAS Google Scholar Article

  • Backus, BT & Oruç, I. Illusory motion due to time-varying contrast and luminance response. J.Vis. 51055-1069 (2005).

    Google Scholar article

  • Murakami, I., Kitaoka, A. & Ashida, H. A positive correlation between fixation instability and illusory motion strength in a static display. Vision. Res. 462421–2431 (2006).

    Google Scholar article

  • Ashida, H., Kuriki, I., Murakami, I., Hisakata, R. & Kitaoka, A. Direction-specific fMRI fitting reveals the visual cortical network underlying the “snakes” illusion in rotation”. Neuroimaging 611143-1152 (2012).

    Google Scholar article

  • Kuriki, I., Ashida, H., Murakami, I. & Kitaoka, A. Functional brain imaging of the spinning snake illusion by fMRI. J.Vis. 81–10 (2008).

    Google Scholar article

  • Agrillo, C., Gori, S. & Beran, MJ Do rhesus monkeys (macaca mulatta) perceive illusory motion? Anim. Conn. 18895–910 (2015).

    Google Scholar article

  • Bååth, R., Seno, T. & Kitaoka, A. Cats and illusory motion. Psychology 51131-1134 (2014).

    Google Scholar article

  • Regaiolli, B. et al. Motion illusions as environmental enrichment for zoo animals: a preliminary investigation of lions (panthera leo). Front. Psychol. https://doi.org/10.3389/fpsyg.2019.02220 (2019).

    PubMed Article PubMed Central Google Scholar

  • Gori, S., Agrillo, C., Dadda, M. & Bisazza, A. Do fish perceive illusory motion? Science. representing 46443 (2014).

    ADS CAS Article Google Scholar

  • Agrochao, M., Tanaka, R., Salazar-Gatzimas, E. & Clark, DA Mechanism of analogous illusory motion perception in flies and humans. proc. Natl. Acad. Science. United States 11723044–23053 (2020).

    CAS Google Scholar Article

  • Richards, BA et al. A deep learning framework for neuroscience. Nat. Neurosci. 221761-1770 (2019).

    CAS Google Scholar Article

  • Funke, CM et al. Five things to check when comparing the visual perception of humans and machines. J.Vis. 211–23 (2021).

    Google Scholar article

  • Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Anna. Rev. Screw. Science. 1417–446 (2015).

    Google Scholar article

  • Ward, EJ Exploring Perceptual Illusions in Deep Neural Networks. bioRxiv https://doi.org/10.1101/687905 (2019).

    Google Scholar article

  • Sun, ED & Dekel, R. The deep neural network trained by ImageNet exhibits an illusion-like response to the flickering grid. arXiv:1907.09019 (2019).

  • Benjamin, AS, Qiu, C., Zhang, LQ, Kording, KP & Stocker, AA Shared visual illusions between humans and artificial neural networks. Proceedings of the Annual Conference on Computational Cognitive Neuroscience, 585–588 https://doi.org/10.32470/CCN.2019.1299-0 (2019).

  • Lotter, W., Kreiman, G. & Cox, D. A neural network trained for prediction mimics various characteristics of biological and perceptual neurons. Nat. Mach. Information. 2210-219 (2020).

    Google Scholar article

  • Gomez-Villa, A., Martin, A., Vazquez-Corral, J. & Bertalmio, M. Convolutional neural networks can be tricked by visual illusions. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition12309–12317 (2019).

  • Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Bertalmío, M., and Malo, J. Color illusions also trick CNNs for low-level vision tasks: analysis and implications. Screw. Res. 176156–174 (2020).

    CAS Google Scholar Article

  • Kim, B., Reif, E., Wattenberg, M., Bengio, S. & Mozer, MC Neural networks trained on natural scenes exhibit gestalt closure. Calculation. brain behavior. 4251-263 (2021).

    Google Scholar article

  • Watanabe, E., Matsunaga, W. & Kitaoka, A. Motion signals deflect the relative positions of moving objects. Screw. Res. 502381–2390 (2010).

    Google Scholar article

  • Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M. & Tanaka, K. Illusory motion reproduced by deep neural networks trained for prediction. Front. Psychol. https://doi.org/10.3389/fpsyg.2018.00345 (2018).

    PubMed Article PubMed Central Google Scholar

  • Lotter, W., Kreiman, G. & Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv:1605.08104 (2017).

  • Kawato, M., Hayakawa, H. & Inui, T. A forward-reverse optics model of reciprocal connections between visual cortical areas. Network calculation. Neural system. 4415–422 (1993).

    Google Scholar article

  • Rao, RP & Ballard, DH Predictive coding in the visual cortex: a functional interpretation of some extraclassical receptive field effects. Nat. Neurosci. 279–87 (1999).

    CAS Google Scholar Article

  • Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Science. 360815–836 (2005).

    Google Scholar article

  • Kitaoka, the pages of illusions by A. Akiyoshi. http://www.ritsumei.ac.jp/~akitaoka/index-e.html.

  • Watanabe, E. Illusion of ink blots. slice of fig https://doi.org/10.6084/m9.figshare.6137582 (2019).

  • Chen, K. icrawler. https://icrawler.readthedocs.io/en/latest/ (2017).

  • Kobayashi, T. & Watanabe, E. Visual illusions data set. slice of fig https://doi.org/10.6084/m9.figshare.9878663 (2019).

  • Lucas, BD & Kanade, T. An iterative image registration technique with application to stereo vision. Proceedings of the Imaging Understanding Workshop121-130 (1981).

  • Farnebäck, G. Two-frame motion estimation based on polynomial expansion. proc. Scan. Conf. Anal picture. 2749363–370 (2003).

    Google Scholar article

  • Hisakata, R. & Murakami, I. The effects of eccentricity and retinal illumination on illusory motion observed in a stationary luminance gradient. Screw. Res. 481940-1948 (2008).

    Google Scholar article

  • Kobayashi, T. & Watanabe, E. Artificial perception meets psychophysics, revealing a fundamental law of illusory motion. arXiv:2106.09979 (2021).

  • Sinapayen, L. & Watanabe, E. Evolutionary generation of visual motion illusions. arXiv:2112.13243 (2021).

  • Gomez-Villa, A., Martín, A., Vazquez-Corral, J., Malo, J. & Bertalmío, M. Synthesizing visual illusions using adversarial generative networks. arXiv:1911.09599 (2019).

  • Hirsch, E. & Tal, A. Visual Illusions of Color: A Computational Model Based on Statistics. arXiv:2005.08772 (2020).

  • Jack C. Nugent